
WATER & BUOYANCY SYSTEM

Version 1.0

Intro
The Water & Buoyancy system is mainly comprised of three main

components:
• The Water Shader
• The Water Component
• The Buoyancy Component

The Water Shader is just the Shader you will use to create your water

materials, and is responsible for the way the surface of the water looks. It is not
responsible for the waves and general surface deformation - that all happens on the
CPU side in the Water Component.

The Water Component is a script that is applied to the Water object in your

scene. This controls the deformation of the water, and this is where you will tune
and preview all the waves and noise on your water. It also controls the water’s side
of the buoyancy calculations, and manages the creation and removal of Buoyant
Force objects at runtime.

 Lastly the Buoyancy Component is applied to any objects that you want to
float. While the Buoyant object needs to have a collider of some sort for initial
collision detection, it must also have a specified Buoyancy Hull mesh as well. Much
like a mesh collider, this is expected to contour the shape of the mesh, but cost-
savings go a long way towards making the simulation run smoothly, so I strongly
advise making the Buoyancy hull as low-poly as possible.

 If you’re ever confused how any of these components should be set up, feel
free to refer to my demo scene, and it should give you a good example as to what a
reasonable setup might look like.

 Without further ado, let’s jump into setting up each of these components
individually.

Water Component

Creating a Water Plane
 To create a Water Plane, you can start by just using the GameObject menu to
create a 3D plane. By default, the plane should be oriented facing upwards (this is
good!). A few things to note here:

• You will always want the water object’s Y position to be 0. The shader will act
strangely if it’s any higher or lower than this.

• It’s probably also best if X and Z are 0 as well.
• Don’t scale the water plane in any axis. Use the Mesh resolution settings

noted below to adjust the size of the water.

 Once you have your plane situated at (0, 0, 0), go ahead and assign the Water
component to it. You’ll notice that it created a Water component as well as a Mirror
Reflection component. The Mirror Reflection is necessary to have realtime
reflections in-game, so the Water component creates it automatically.

Setting Water Mesh Resolution

 The Water Component inspector features the ability to resize and re-tessellate your
mesh via the inspector. Just set the Scale and Subdivisions fields on the Editor, and hit the
Subdivide button. After you do this, it will delete your existing mesh and create a new one
with the specified settings.

NOTE: If you had any vertex colors or any other mesh information on your plane, it
will not persist if you use the subdivide option.

Adjusting Water-side Physics Settings
 The Physics box on the Water component script contains a few settings regarding
how it handles physics for buoyant objects.

Physics Depth
 At runtime, a box collider will be generated for the water. This will span in the X and
Z directions based on the dimensions of the mesh. The Y length of the box collider is
determined by the Physics Depth field. When something leaves the water’s collider, its
buoyancy will stop being simulated, so if something sinks beyond the Physics Depth, then it
will simply fall out of the simulation and continue downwards, and we won’t waste any
more time calculating it.

Simulation Quality
 This is a global value that applies to all buoyant objects that float in this water. The
higher the Simulation Quality, the more accurate the buoyant forces applied to that object

will be, but the more expensive those simulations will be as well. Check out the section on
Buoyant Force Planes for more details on how this works.

Creating Waves

The Wave Editor

 The Wave Editor is the area on the Water Component Editor where you can add,
remove, and edit your waves. If you have no waves, you will simply see two fields:
Amplitude Scalar and Time Scalar. These are values that affect every Wave on your Water,
so they can be used to easily adjust the look of the system after all the setup is done.

Adding a Wave
 To add a Wave, all you have to do is hit the large “Add Wave” button. Once you do,
the new Wave and all its settings will appear beneath the button.

Editing a Wave
 The wave is just a set of mathematical values used to determine its shape.

• Amplitude - The height of the wave (in meters)
• Wavelength - The distance from crest to crest (in meters)
• Speed - How quickly the wave cycles
• Steepness - How sharp the wave is. 1 is pointy, 0 is smooth.
• Direction - The direction the wave travels in. Overdriving these values past a

normalized vector will give you artifacting if your steepness is set to
1. (Pictured below)

Previewing a Wave

 To preview your waves, just go to the top of the Water Component and hit the big
Preview button. This will cause your waves (and noise) to play, even in the Editor. You can
also adjust the values live to see how they change the look. You can also mark individual
Waves and Noises to be previewable (or not) in their Editor. When you are done
previewing, just hit the Preview button again (now it says ‘Stop’) to stop.

Removing a Wave
 To remove a Wave, all you have to do is click the “X” button in the top-right corner of
its editor. This may throw an error in the debug window - disregard it. Everything is fine.

Duplicating a Wave
 To duplicate a Wave, just hit the “Duplicate” button at the top of the editor for the
Wave you want to duplicate. This will create a new Wave at the bottom of the list identical
to the one you duplicated.

Noise

 Noise can be created, edited, removed, and previewed just like waves, so no need to
be redundant there. Noise is just simple Perlin, with some basic mathematical parameters.

• Offset - The initial offset for the noise. If you are using more than one, this
can be used to make sure they don’t start in the same place.

• Amplitude - The height of the noise (in meters).
• Scale - This is basically the “wavelength” of the noise - how broad it is on a 2D

plane.
• Power - Similar to the “steepness” variable of the wave - how sharp is the

falloff?
• Scroll Speed - The X and Y speed at which the noise moves.

 NOTE: Because of the associated computation times, normals are not calculated for
noise like they are for waves. For the best possible look, I recommend keeping noise to a
minimum - only use it to break the monotony in your waves.

Mirror Reflection
 First a quick note: I didn’t write this script, so I can’t guarantee I can debug it.
 This script generates realtime reflections to be passed into the Water Shader. It
does have a few values that can be tweaked.

• Disable Pixel Lights - Whether or not lights should be disabled in the
reflection. Since the reflection here is basically just tones and silhouettes, I
recommend leaving this checked.

• Texture Size - The size of the generated reflection texture. Again, we’re just
looking for basic tones and silhouettes, so I like to leave it at 256.

• Clip Plane Offset - The Clip Plane offset for the rendering camera. Unlikely
to be relevant, so the default value here is fine.

• Reflect Layers - Which layers you would like to show up in the reflection. If
there are any objects that you would like to exclude from the water’s
reflection (maybe for performance reasons), this would be the place to do it.

Water Shader

Creating & Applying the Water Shader
 When creating a new Water Shader, I highly recommend duplicating my existing
one, located at “Assets / WaterSystem / Materials / Water”. Most of the tedious setup is
done for you, and it’s much easier than starting from scratch. If you do want to make a new
one, however, just create a new material and assign the “Water” shader in the dropdown.

 To apply the Water Shader, just drag it on top of your water plane in the scene view,
or assign it in the Mesh Renderer component.

The Water Shader Values
 The Water Shader has a lot of things going on, so I’ll take a moment here to explain
what they all mean.

High Color & Low Color
 The Water shader uses the wave height to change the diffuse color. The High Color
is the color that the waves will be at their peak - the Low Color is what the diffuse color will
be at the trough. If you want these to be the same, just assign the same color to each.

Subsurface Scattering
 As the name implies, how much the water scatters light. Higher values make the
lighting on the water softer, but don’t go higher than 2.

Near Gloss, Far Gloss, Fade Distance
 The Water shader blends gloss values depending on how far the camera is from the
pixel being rendered. Near Gloss is the glossiness of a pixel directly in front of the camera,
Far Gloss is the glossiness of a pixel that is (Gloss Fade Distance) meters away from the
camera and beyond.

Tessellation Amount
 This value controls the phong tessellation applied to the mesh via
shader. Somewhat unintuitively, the lower the amount, the more tessellated the object is.

Depth
 How far beneath the water you can see another object before the surface of the
water becomes opaque.

Reflection Intensity
 This controls the intensity of realtime reflections on the surface of the water.

Reflection Warping
 The extent to which the reflection is warped by the surface normals of the water.

Normals

 The Water Shader uses two instances of the same Normal map scrolling against
each other. The Normals texture option is looking for a normal map to act as the scrolling
surface normals for your water.

Normals 1 & 2 Tiling
 The Tiling values for the two different samples of the normal map. A couple tips -
make sure the numbers aren’t multiples of one another, and add as many erroneous
decimal places as possible to ensure that an overlap is incredibly unlikely.

Normals 1 & 2 Speed
 The speed at which the normal maps scroll.

Normal Direction
 The direction information for the normal map scrolling has been trimmed into one
Vector 4, so the X & Y values refer to the U & V values of the first sample, and the Z & W
values refer to the U & V values of the second sample.

Normal Intensity
 This scale the surface normal intensity of your normal maps, and ranges from 0 to
1.5. A value of 0 will only show the mesh normals as defined by the waves, and a value of
1.5 will exaggerate the surface normals from the scrolling.

Refraction Intensity
 Objects beneath the water will be refracted based on the surface normals of the
water - this field controls just how much warping is present.

Opacity Minimum
 This is the least opaque the water will ever get. Even if there is a visible object
immediately below its surface, the water shader will still draw over top of it with at least that
much opacity.

Outline Width

 The Water Shader uses an outline to highlight intersection with other objects. This
controls the width of that foam intersection.

Foam Texture

 This refers to a texture to be used as the foam on top of the waves. It should have an
RGB diffuse texture as well as an Alpha channel that determines its opacity overlaying the
water.

Foam Tiling 1 & 2
 Just like with the normals, the Foam is sampled twice and scrolled against each
other to make it look more dynamic. These values, just like with the normals, control the
tiling values for the individual samples.

Foam Direction 1 & 2
 Unlike with the normals, this time you have two Vectors to orient the direction of the
scrolling. Disregard the Z and W values - they do nothing.

Foam Scroll Speed

 Unlike with the normals, the speed value applies to the scrolling-speed of both
samples of the Foam texture.

Foam Normals
 This is a normal map generated for the Foam. It will be factored into the surface
normal calculation to ensure that the foam looks like it has volume and doesn’t adhere to
the choppy water underneath it.

Foam Warp Intensity
 This value applies a warp to the foam based on whether or not it’s sloping down off a
wave. Depending on the intensity of your simulation, this can be a cool effect.

Foam Power
 This controls the sharpness of the falloff for the foam. The foam will only show up
on the tops of waves by default, but you can tweak exactly how low or high the foam goes
here.

Foam Bumpiness
 Here you can control the intensity of the Foam’s normal map, just like with the water
surface normals.

Buoyancy Component
What is it?
 The Buoyancy Component is what you would apply to objects that you want to float
in the water. Any buoyant object must have a collider and a rigidbody, otherwise it will not
be simulated.

How does it work?
 When an object with a Buoyancy component comes into contact with the water, the
Water object creates a “Buoyant Force Plane” that follows the floating object and applies
buoyant forces to it as it floats. In the picture below you can see the gizmos drawn for the
buoyant force plane (it doesn’t have a mesh renderer so you can’t actually see it), as well as
the hierarchy and inspector for it.

Buoyancy Hull

 The Buoyancy Hull is the mesh referenced by the water simulation to determine
how much of the mesh is submerged and how forces should be applied. This should be
similar to a mesh collider, but it should be as cheap as possible. Buoyancy simulations are
expensive - reducing the number of triangles that need to be accounted for goes a long
way. To see your Buoyancy Hull in the editor, just hit the “Preview Buoyancy Hull” button.

Center of Mass Offset
 This offsets the center of mass for the rigidbody on Start. This is being used in the
ship to move the center of mass way lower to make it much more stable and upright.

